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SHOCK WAVE STRUCTURE IN A MIXTURE OF GAS AND MELTING PARTICLES 

A. V. Fedorov and V. M. Fomin UDC 532.529.5 

The process of fusion of solid particles dispersed within a gas flow occurs during vari- 
ous gasdynamic reactions in technical equipment. In particular, for noncalculable regimes 
in Laval nozzles, using a gas with solid combustion products of some fuel as a working medium, 
the structure of the shock wave which develops is complicated as compared to that of a shock 
wave propagating in a mixture of gas and particles without consideration of the phase transi- 
tion, because aside from the relaxation process of equalization of the temperatures of the 
phases, particle transition from the solid to the liquid state occurs with a finite relaxa- 
tion time. The driving force for this transition is the difference of the liquid concentra- 
tion from its equilibrium value. 

The structure of a shock wave in a mixture of gas with melting particles was studied 
in [i, 2] within the framework of single-velocity, single-temperature mechanics of hetero- 
geneous media with consideration of the nonequilibrium fusion process. The case in which 
the process of heat exchange between the phases occurs at a finite rate requires consideration 
based on a model which considers the difference between the temperatures of the phases. At 
the same time, considering the particles to be sufficiently small, and assuming that they 
are instantaneously carried off by the gas flow, we may conclude that the simplified model 
proposed in [3] will be adequate for the study of shock wave propagation in a mixture of gas 
with metal particles, with consideration of fusion. We will assume that the heat of phase 
transition L is independent of the fusion temperature, determined by the pressure of the mixture. 

i. Formulation of the Problem of Determination of Shock Wave Structure in the Mixture. 
Study of the Hugoniot Adiabat. We will consider the process of shock wave propagation in 
a mixture of gas and solid particles. The equations describing this phenomenon in a reference 
frame traveling with the shock wave have the form 

pu : cl, p + clu : c~, e + pv  + u2t2 = c~, ( 1 . 1 )  

~Rr 
P =  w , e = c v l T  + c , T  2 + L~, 

u ~  = •  u T 2  = q, .  o ~  = O33 = r 

(using the notation of [3]). We will use the source function 
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System (i.i) is complemented by the boundary conditions 

u = u o ,  V = v o ,  T =  T ~ =  T o , ~ = ~ o , u  . . . . .  ~ - ~ 0 ,  ( 1 . 2 )  
x - - ~  - -  oo, u = u f , v  --- v f , T  = T2 = T f ,  i = ~ f ,  

where values with the subscript f are the flow parameters of the mixture in its final state. 
This state is represented by a point on a completely equilibrium Hugoniot adiabat 

~ / 2  + ~ + p~ + LL ~xp ( -  L (T-'  -- T;~)/ ;~)  = ( i .  3) 
- ~ 2 2 = r  I 0 ~- POUO + L~0 -~" crvo/2, T = p w / ~ R ,  w = v - -  [3. 

Types of mixture flow in the presence of fusion of a discrete phase ?(~, ~l) were presented 

in [3]. 

Definition I. The Hugoniot adiabat for the flow F(0, 0) is the completely equilibrium 
adiabat, while for the flows F(0, ~), F(~, 0) it is partially equilibrium. 

We write the equilibrium adiabat (1.3) defining the final state in the form 

A ( v ) : : c v r  + p v + c ~ v ~ / 2 , ' ~ v T o _ p o v o _ c ~ v ~ / 2  = L ~ u ( t - - e x p ( - - L ( T - a - - T $ ~ ) / C y ~ ) ) = B ( v ) .  ( 1 . 4 )  

I f  B(v)  = O, t h e n  Eq. ( 1 . 4 )  g i v e s  t h e  f i n a l  s t a t e  in  t h e  f low r ( + ,  0 ) .  We d e f i n e  t h i s  e x p r e s -  
s i o n  by s o l u t i o n  o f  an e q u a t i o n  q u a d r a t i c  in  v [ t o  which Eq. ( 1 . 4 )  t r a n s f o r m s  in  t h e  g i v e n  
c a s e ]  : 

�9 t + , t r  c2v ~ +  [ ?r c ~ - -  t 
L v r - i  + . ~--7:-~-~ Jj =~  ( i . 5 )  2-~-_._" ~T) 1 

One of its solutions is v0, the other being 

MT,o =uo ~ vTP~176 ~--~0 / , "~r = c~/r cv = ev~ + c,, cp = c~: + c,, cw = ~Cvl, 

(z = (P=o + Pao)/Po, c, = ~zc,, 

(1.6) 

whence it is evident that as m20 + m30 + 0, Eq. 1.6) coincides with the gasdynamics result, 
with vf, - < v0. Thus, A(v) has the form of an inverted parabola. 

We will consider the function T = T(v) = (c= - c12v)w/R (R = ~R), which has a maximum 
at the point v = v, = v0(l + m20 + m30 + ml0/~fMf0)/2. It can be shown that v, < vo given 

the condition i < ~fMf 2. Since v..... - vf ~'~ (3--20+Yr)?r),t10 (! + ?TI3_~,r) M~.0/>01--377 1 for MT,O= > 

(3yT - I)/YT(3 - YT) ~ M, 2, then at MT,02 < M,2v, < vf=, 0 < v0 and in the interval (vf~, ~ 
v0)dT/dv < 0. 

The quantity dB/dv = exp(-L(T -z - T0-1)/cv1)LdT/dv/cviT 2 at the point v = v 0 is positive, 
since dT/dv > 0, the function B(v) is continuous over the interval (v~, v0); therefore, on 
the basis of the above, A(v) and B(v) intersect only at a single point to the left of vf =,~ 
i.e., vf ~176 < vf~, ~ < v 0. We will formulate t~is result as: 

Statement i. For flow of an equilibrium mixture of gas and solid particles with con- 
sideration of fusion of type F(0, 0) the final state uf, vf .... , $f on the adiabat Eq. (1.3) 
is uniquely determined. 

To proceed further we must determine the relative magnitudes of vf ~176 v .... Evaluation 
of vf ~176 in the general case is difficult, so we will perform an approximate evaluation, inas- 
much as v 0 - vf << 1 from a priori assumptions, the following operations are highly accurate. 
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We take the Taylor series B(v) = B0(T - T o ) + 0(T - To) =, B 0 = L2$0cvi, L = L/cv~To; s u b -  
s t i t u t i n g  in Eq. (1.4), we obtain an analog of Eq. (1.5) for r(0, 0), the solution of which 
has the form of (1.6), where instead of~T w~ use ~0 = Cp~ ~ Cp ~ = ~p + Bo, cv ~ = ~V + B~ 
M0,o ~ = (~0p0v20/w0)-~u02. We may demonstrate in a similar manner that v, < vf ~176 < vf ~'~ < 
v o for M0,0 = < M, , M, being defined by ~0. 

2. Formulation of the Problem in the Plane (u, ~). Study of Singular Points. Formula- 
tion of the Main Result. Choosing as the unknown functions in Eq. (I.i) (u, g), and using 
the final relationships of Eq. (i.I), we obtain 

du ax+bq . = ~ ( u , ~ ) ,  d~ • = Q ( u , ~ ) ,  ( 2 . 1 )  
d--x=-- u c  d x  u 

where a= = (evse~ - evSes)/es; b = (evseTa - evTaes)/es; c = (u = - -  Cf2)/ClV 2 �9 The singular 
points of system (2.1) are its equilibrium positions, and as was shown in Sec. i, with M 0 
limited, two such points exist (u0, $0), (uf, Sf). Then the problem formulated above of de- 
termining a solution to Eqs. (i.i), (1.2) reduces to finding a solution of Eq. (2�9 satisfy- 
ing the steady-state conditions at • 

The possibility of solving this problem depends on the type of singular points involved, 
which we find by analyzing the roots of the corresponding characteristic equation 

g3 + g,a + A .= O, ( 2 . 2 )  

= ~ + ~ = _  (~ ~ + ~p~, ~)/.~,~ (.* _ ~y)  - 

- (.~-- ~ + v ~  r~.,o)/~,~,~(~-c~), ~ =  ~ q ~ - 0 ~  = ( u ~ - - ~ ) ( . ~ -  ~;)/- ~,  

(o, A are taken at the initial and final points)�9 We will consider the roots of Eq. (2�9 
for the condition Ce < u < cf. Then A < 0, whence we find the different real roots 

~,~,~ = (~ _ ] / ~  - -  45)/2. 

Hence  i t  i s  e v i d e n t  t h a t  f o r  t h e  c o n d i t i o n  u ~ (Ce ,  c f )  t h e  s i n g u l a r  p o i n t  i s  a s a d d l e .  

L e t  u > c f ,  u < Ce. I n  a n a l o g y  t o  [ 4 ] ,  we w i l l  c o n s i d e r  t h e  r a d i c a n d  D~ = o - 4A a s  a 
s e c o n d - d e g r e e  p o l y n o m i a l  i n  5 = ~ / ~ :  

D2 (~J) ---- T*- [ (u~ - -  c~)2;  ~ + 2~ [ (u~  - -  c~) (u*- - -  c~=) - -  2 (u  ~. - -  c~) (u. ~- - -  c~) l + (u~ - -  c~,~)=}, 

d = ~ - , ~ ; g , . , ,  ~ = '~ - ~ 'p~,r , , .~" 

Its roots are defined by 

where u 5 = u 2 - c~2; uT = u = - CT22; uf = u 2 - cf =, ue = u 2 
4UfUe(Ufue - uSuT) = 4(u = - cf=)(u = - Ce 2)p$$e,vpT2T2e,v. - ce2" 

We will establish the sign of the quantities p$, ge,v, PT=, Tme,v: 

�9 2"" ' . . . . . .  ~  - -  P%'%- h~ = q;2~o~ + q~% + qo~cp~ = O (O + ~ ln~ (~/~p) + t) > O, 
-- ~wTA I ~ 

. .. �9 _ - -  

~p, ---- ]n (~/~),. ~ = to exp ( L/evxT o), ~P~ = E-x,. tp= = - -D/T=,  "~o = D/T~, D = c,/cw,.  

( 2 . 3 )  

The discriminant D I = 

~I'  2 e D 
Wherefore av' < 0"." The quantities 0~e~__~, = 7vITAIP%~2 cvITAIT~PD In (~/~p), P~ = p in (~/~p), pr 2 = --P T--~" 

aDZ 
Hence P~e.vpT~T2e.v=--T~e~- Pw a ln~(~/~p)>0 always, while D I < 0 and, consequently, D= > 0 

. , _ c v l T A 1 T  2 . �9 

T h i s  means  t h a t  t h e  r o o t s  ( 9 )  o f  t h e  e q u a t i o n  f o r  ~ a r e  d i f f e r e n t  and  r e a l ;  f o r  o < O, )~2 < 
~i < 0, for o > 0, ~i > ~2 > 0. 
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The relative magnitude of the quantities CT=2 ' c~2 are of interest, so we find CT22 - 

c[ = ;~,~ra ~ r-~ 1.~ - i .  C a l c u l a t i n g  t h i s  q u a n t i t y  a t  t he  e q u i l i b r i u m  p o i n t s ,  where Se = 

i:e(S, v ) ,  we f i n d  ~ln~@~ 1 L2 - -  ~_ -~--- I. It is evident that for appropriate param- 

eter values we may have CT~ = ~ c$ 2. The values of ml,0, ~0 actually chosen are such that 

Ce 2 < CT22 < c~2 < cf 2. 

Thus, let u0,f > cf, then o > O, and for all u0,f the given singular point is a node with 
negative eigenvalues. The equality o = 0 is achieved by corresponding choice of ~, T I. If 
Uo,f <Ce,o,f, theno <0, which means that the singular point is a node with negative eigen- 
values XI,2 < O. The above analysis permits the following statement. 

Statement 2. If the value u at which ~ and Q vanish lies in the interval (ce, cf), 
then the singular point of Eq. (7) t is a saddle, while if u > cf and u < ce, the singular 
point is a node with negative eigenvalues. 

Further analysis of the problem reduces to study of the integral curves passing through 
the singular points 0 and f, as was done in [5]. A unique situation may then arise, based 
on the presence of a singular line u 2 - cf2(u) = O. It is simple to obtain an explicit solu- 

= 2(~f + 1 - m10))/(l + Yf)Mf,02 tion of this equation in the form u/u0 Um/U 0 ~ (ml0 + Mf, 0 
Hence it is evident that the value of the velocity at the sonic point u = uM, treated as a 
function of Mf,0, is greater than unity for Mr,0 < 1 and less than unity in the opposite case. 

We will now make use of the result of [7] concerning the behavior of the function u(x) 
in the definition region. It is simple to prove that the derivative with respect to T of 
the equilibrium value of the corresponding parameter $ = Se, T2 = T2e is positive, so that 
(i) and (ii) from Sec. 2 of [7] are valid for our case also. Neglecting the volume concen- 
tration of particles m s + m 2 << 1 the equation of state takes on the form pv = RT. Then given 
condition (ii) of [7], u 0 < cf,0u(x) either decreases monotonically to the final state, or has 
an initial local minimum. This means that u = u(x), decreasing for u0 < cf,0, cannot reach 
the value u = uM. However, the point uf is attainable, since at +~, ki < 0 for i = i, 2. Then 
u 0 > cf,0(i):, and for continuous change of u(x) we find the point u = uM, where du/dx - ~. 
Therefore, we have a discontinuity from u 0 to u [7] with either a monotonic zone for u(x) 
or a local minimum. As a result we may formulate Statement 3. 

Statement 3. The solution of the boundary problem for system (7) % exists in the class 
of continuously differentiable functions for the condition u0 ~ (Ce,0, cf,0). If u0 > cf,0 > 

%As in Russian original - Publisher. 
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there is a generalized solution of the boundary problem in the form of a discontinuity, com- 
plemented by a zone of continuous change for the functions u, v, ... 

3. Example of Numerical Calculation. Evaluation of Results. The numerical algorithm 
developed by the authors for solution at u0 ~ (ce,0, cf,0) consists of the following steps. 
On the basis of Statement 3, in the given case the singular point is a saddle; therefore, 
to reach the equilibrium state at -~ it is necessary to choose a solution of the linearized 
system corresponding to X1 > 0. Taking 

- %1 x %1 x 
u - - u  0 = b i l e  , ~ - - t 0 = h 1 2 e  , 

i n  t h e  s o l u t i o n ,  w h e r e  ( h ~ z ,  h z 2 )  i s  t h e  e i g e n v e c t o r  c o r r e s p o n d i n g  t o  t h e  e i g e n v a l u e ' X z ,  u = 
u0 - e ,  we f i n d  xg = (1 /X 1) i n  ( - E / h z z ) ,  a nd  t h e n  ~e = ~0 + hz2eXlXE.  We t h e n  s o l v e  t h e  Cauchy  
p r o b l e m  f o r  Eq.  ( 2 . 1 )  w i t h  i n i t i a l  v a l u e s  u = uo - ~,  ~ = ~E, x = xE. I n t e g r a t i o n  i s  t h e n  
p e r f o r m e d  by  t h e  m e t h o d  o f  [6]  t o  u = u f  + e l .  

F o r  u0 > c f , 0  we d e t e r m i n e  t h e  v a l u e  u = G, t h e  m i x t u r e  v e l o c i t y  b e h i n d  t h e  d i s c o n t i n u -  
i t y  i n  t h e  f r o z e n  s h o c k  wave ,  a n d  t h e n  i n t e g r a t e  t h e  Cauchy  p r o b l e m  u = ~ ,  g = ~0,  x = 0 .  
The c o m p u t a t i o n  i s  h a l t e d  a t  u = u f  + ~z .  As d i m e n s i o n l e s s  v a r i a b l e s  we u s e  u = u / ~ ,  p = 

P/P0, P = O/Plz,0, P0 = P11,0RT0, x/x0, t = t/T, x 0 = RC~0T , T = T/T0, T 2 = T2/T 0 . 

In performing numerical calculations of the frozen shock wave structure the effect of 
relaxation time s on the distribution of relative mass concentration ~ over the length of 
the wave was studied (Fig. i, curves 1-3 correspond to s = 0.01, 0.i, 0.5). Ahead of the 
wave the mixture is in an equilibrium state at the fusion temperature. The particles tra- 
verse the wave with constant parameters ~ = ~0, T2 = T20 = I. The gas temperature within 
the shock wave increases such that heat exchange begins between the continuous phase and the 
dispersed phase, with resulting fusion of solid phase particles. This fusion occurs by a 
mechanism (the driving force of which is the difference of the concentration from its equilib- 
riumvalue),characterized bya relaxation time T. It isevldent thatwith decrease in Tthe process 
of transitionof ~to theequilibrium value~f accelerates. With increase in rat somer, satura- 
tion occurs, so that at s > s, the ~ process can be considered frozen. The behavior of gas 
temperature is similar (Fig. 2, ~i = const, curves 1-3 correspond to s = 0.01, 0.1, 0.5), 
T2 changes less. This can apparently be explained by the fact that in the given case the 
dominant role is played by the ~-process, which is determined directly by gas temperature. 
At the same time, heat exchange between the discrete and gaseous phases is prolonged, in view 
of ~z = const = i, so that the temperature of the discrete phase reacts more weakly to change 
in ~. 

The effect of the heat of phase transition on the flow pattern is of interest. Increase 
in L leads to an increase in the temperatures of the phases at corresponding points along 
the relaxation zone, since with increase in L the equilibrium speed of sound decreases, i.e., 
the mixture is less in equilibrium, as characterized by an increase in temperature at the 
end of the relaxation zone (Fig. 3, where a family of Hugoniot adiabats dependent on the param- 
eter L is shown). With increase in the heat of fusion, the pressure increases, and thus the 
temperature of the mixture at the final equilibrium point also increases. Figures 4 and 5 
show temperatures of the discrete and continuous phases along the wave (lines 1-3 for L = 
2.5, i, 0.3). With decrease in L the dependence of temperature profiles on the heat of phase 
transition weakens. This is because decrease in L leads to an attenuation of the phase transi- 
tion process, and in the limit L + 0 the mixture will have the limiting relaxation zone of 
a single-velocity two-temperature mixture of gas and discrete particles. 

Figure 6 shows the temperature profile along the relaxation zone for several character- 
istic parameter values. It is evident that the gas temperature increases with braking of 
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the mixture in the relaxation zone. The gas temperature increases more intensely due to brak- 
ing. The particles heat due to heat exchange with the continuous phase, remaining colder 
than the gas. Increase in the relaxation time ~l naturally leads to freezing of the heat 
exchange process. At ~i - 0, the change in T, T 2 to their final value occurs in a boundary 
layer the length of which changes little after ~i < 0.01. 
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TIME-FREQUENCY CHARACTERISTICS OF AN ELASTIC WAVE 

]LEDIATED BY A CAMOUFLET EXPLOSION 

A. A. Zverev, E. E. Lovetskii, and V. S. Fetisov UDC 534.222 

One of the features of explosive action upon a medium is the radiation of elastic waves 
by the explosive source. This process is of interest, since the range of action of elastic 
waves on the medium significantly exceeds the dimensions of the destruction zone created by 
the explosion. Data concerning the explosion transferred by elastic waves can be received 
at large distances from the center. The carrier of these data is the elastic wave, the spec- 
trum of which is usually characterized by some fundamental frequency. The characteristic 
frequency is determined by the dimensions of the elastic wave source Re: ~0 = c~/Re, where c~ 
is the speed of sound in the perturbed medium. The spectral characteristics of the elastic 
wave contain information on the properties of the medium surrounding the change [i]. It is 
thus of interest to study the effect of medium parameters in the vicinity of the explosion 
on the frequency-time characteristics of the radiated wave, as well as upon the seismic effi- 
ciency of an underground explosion. 

We will consider the explosive process from the moment of shock wave formation. We as- 
sume that on the shock wave front the medium is compressed due to collapse of pores. The 
medium then breaks into particles and behind the front the medium expands due to the dilatance 
effect [2]. In this stage the velocity of the shock wave front or destruction wave exceeds 
~;he speed of propagation of longitudinal compression waves in the given medium. After the 
velocity of the front becomes equal to the velocity of longitudinal waves elastic waves be- 
gin to radiate from the destruction wave front, continuing after the latter halts. 

At the initial moment a shock wave breaks away from a spherical cavity of radius ao, 
filled by gas at a pressure of P0. The increase in density of the medium at the front is 
defined by the quantity [3] 
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